Defining Domain-Specific DNA Programming Languages Using GenoCAD 2.2 Grammar Editor

Jean Peccoud, Laura Adam, Mandy Wilson
Virginia Bioinformatics Institute
Virginia Tech

Synthetic DNA molecules as programs

Moon et all (2012) Genetic programs constructed from layered logic gates in single cells Nature (491) 249-53

Different Dialects Plasmids for different purposes

Domain Specific Languages

No universal language

► C, SQL, HTML, Flash

Languages express design strategies

- ► Domain-specific
 - o bacterial, yeast, mammalian
- ► Project-specific
 - o gene therapy, synthetic biology
- ► Organization-specific
 - know-how, intellectual property

Empower end-users to develop their own DSL

 Gene expression in the chloroplast of microalgae

Pieter Bruegel the Elder - The Tower of Babel

Chlamydomonas reinhardtii

2013/07/24 BOSC 2013

CHAPTER EIGHT

Mandy L. Wilson, Russell Hertzberg, Laura Adam, and Jean Peccoud

Meth. Enz. (2011) 498

Published online 18 February 2010

2013/07/24

Library Name: Public Parts Library (E. coli expression grammar)

Description: This is the base library for the E. coli expression grammar

Nucleic Acids Research, 2010, Vol. 38, No. 8 2637–2644

doi:10.1093/nar/gkq086

GenoCAD for iGEM: a grammatical approach to the design of standard-compliant constructs

Yizhi Cai, Mandy L. Wilson and Jean Peccoud*

Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington St MC 0477, Blacksburg VA 24061, USA

Received December 13, 2009; Revised January 28, 2010; Accepted February 1, 2010

W40-W47 Nucleic Acids Research, 2009, Vol. 37, Web Server issue doi:10.1093/nar/gkp361

Published online 8 May 2009

Writing DNA with GenoCAD™

Michael J. Czar, Yizhi Cai and Jean Peccoud*

Virginia Bioinformatics Institute at Virginia Polytechnic and State University, Blacksburg, VA 24061, USA

Received March 13, 2009; Revised April 21, 2009; Accepted April 22, 2009

Example of formal grammar

A grammar is a:

> Set of <u>rules</u> describing how to form <u>sentences</u> from a <u>language's vocabulary</u>

R1: <u>Sentence</u> → Subject + Verb + Object

R2: Subject → NounPhrase

R3: Object → NounPhrase

R4: NounPhrase → NounPhrase + Modifier

R5: Modifier → PrepositionalPhrase

How to build a sentence?

R2

Rules make the structure

Identify and Define Categories

Category	Definition	
5FLR / 3FLR	5' / 3' Flanking region for homologous recombination	
SIS	Short Interval Sequences used to make polycistronic cassettes	
STP	Stop codon	
ATG	Start codon	
GEN	Gene or protein domain. By convention does not include start and stop codons.	
CDS	Open reading frame composed of several protein domains. Does not include start and stop codons.	
TAG	Epitope tags. By convention does not include Start or Stop codons.	
PBS	Sequence associated with the initiation of transcription and translation.	
TCS	Targeted expression cassette. Expression cassette flanked with two adjacent genomic sequences for homologous recombination.	
CAS	Expression cassette delimited by a promoter in 5' and a transcription terminator in 3'.	

Grammar Editor – Add/Edit Categories

✓ Opening chromosome delimiter (/)

Grammar Editor – Add/Edit Categories

Reserved Categories

Category	Definition	
[and]	Negative orientation delimiters	
(and)	Plasmid delimiters	
{ and }	Chromosome delimiters	

Define rewriting rules

Code	Rule	Comment
CAS	S -> TCS	This rule is used to design only one expression cassette
1PLAS	S -> (VEC TCS)	This rule is used to specify the expression cassette along with the vector where it is inserted. The output is the entire plasmid sequence.
2PLAS	S -> (VEC TCS) (VEC TCS)	This rule is for designs that involve two plasmids.
TGS	TCS -> 5FLR CAS 3FLR	Specifies the flanking regions for homologous recombination.
PRCT	CAS-> PBS CDS TER	A gene expression cassette is composed of a promoter, open reading frame, and a transcription terminator.
2CAS	CAS -> CAS CAS	This rule makes it possible to have more than one expression cassette on a construct.
rCAS	CAS -> [CAS]	This rule is used to specify that the cassette is coded on the negative strand.
2CDS	CDS -> CDS SIS CDS	This rule makes it possible to design polycistronic constructs.
SGEN	CDS -> ATG GEN STP	The open reading frame is composed of a single gene flanked by a start and stop codon.
TGEN	GEN → GEN TAG	This rule is used to add a tag to a coding sequence. It can be used iteratively to add more than one tag.
2GEN	GEN-> GEN GEN	This rule can be used to fuse two coding sequences that are not tags.

Grammar Editor – Add/Edit Rules

Enitore tone (TAO)

Start Over

Done

Add parts in libraries

Grammar Summary

Libraries:

Parts:

Rules:

Name: C. reinhardtii Chloroplast Grammar_v5 This grammar captures rules to design expression vectors for the Chlamydomonas reinhardtii chloroplast. Authors: Sakiko Okumoto, Mandy L. Wilson, Jean Peccoud. Icon Set: main_icon_set Supports Attributes?: No # Categories: 20

53

14

Rule-based design of DNA sequences

Part:BBa_J13004

Composite

DNA Available Experience: Works

Designed by Jeff Tabor Group: iGEM_UTAustin (2005-06-28)

Get This Part

polycistronic CFP/YFP expression cassette

A single mRNA containing CFP and YFP under the strong RBS B0034 is driven by the tet repressible promoter, R0040.

Sequence and Features

Point-and-click design tool

A dynamic language

You can change the model ...

- ► Add or Change a Rule in a Grammar
- Delete a Rule from a Grammar

Available Designs

Different design statuses

Valid – the sequence could be decomposed into its parts, and the parts' categories make up a grammar-sanctioned framework.

Needs validation – either grammar, part, or library has changed, and the sequence has not been validated since

Under construction – design is unfinished, so cannot be compiled.

Out of Date – although design is still valid with respect to grammars and libraries, the parts have changed.

Invalid – the sequence cannot be resolved.

Graphical Language Icons

Icon sets: visual language - color - structure

2013/07/24 24

Never odd or even. No lemon, no melon.

Richard Wheeler (Zephyris) 2005; Schematic representation of the insertion of the bacteriophage lambda

Custom languages vs. Standardization

DSL in a standardized world

- ► GenBank
- Sequence Ontology
- ► Synthetic Biology Open Language

Need to map custom concepts to standards

- ▶ Data exchange
- Graphical representation
- Sequence annotation

Can we standardize customization?

SBLE 2013 – October 26 - Indianapolis

Workshop Synthetic Biology and Language Engineering

▶ Bring together language designers and synthetic biologists with the goal of analyzing the different programming paradigms that have been or could be explored to write these biological programs more effectively

► Part of:

- International Conference on Software Language Engineering (SLE)
- International Conference on Generative Programming: Concepts & Experiences (GPCE)
- Systems, Programming, Languages and Applications: Software for Humanity (SPLASH)

http://planet-sl.org/sble-at-sle2013/

Acknowledgements

VBI SynBio Group

- M. Wilson
- D. Ball
- M. Lux
- L. Adam
- C. Overend

GenoCAD Alumni

- Yizhi Patrick Cai (JHU)
- Mike Czar (Carillon)

MASSES TO SERVICE AND ADDRESS OF THE PARTY O

GenoCAD Collaborators

- ▶ VBI: S. Hoops, J. Lewis
- SBOL: H. Sauro, C.Myers, D. Densmore, C. Rodriguez, M. Galdzicki and many more
- Language: Eric Van Wyck

Find GenoCAD

- www.genocad.org
- www.facebook.com/genocad/
- @genocad
- Google +
- ▶ LinkedIn

Questions?

CAD Model of VBI

Photo of VBI