
RAMPART: an automated de novo assembly pipeline
Dr. Daniel Mapleson

Scientific Programmer
daniel.mapleson@tgac.ac.uk

De novo Genome Assembly
(with short reads from NGS devices)

"the equivalent of trying to put together a multi-million piece
jigsaw puzzle without knowing what the picture on the cover
of the box is" ...

Original DNA
molecules

DNA sheared into
shorter fragments
of equal length,
these are then
sequenced

Assembled
sequence

De novo Genome Assembly
(with short reads from NGS devices)

... but in practice we don't just make one jigsaw we make many
different jigsaws and compare them to see which one looks
best.

This presents a number of questions:
● Why create many assemblies?
● What varies between assemblies?
● Which assembly is best?

Why Create Many Assemblies?

● At TGAC we sequence different types of organism. There's
no one fixed pipeline that works well for all cases

● Project collaborators want the highest quality assembly we
can feasibly create

○ without requiring more sequencing!

● One assembler may not work well for all genomes with all
types of sequence data

● Assemblers have parameters! Which ones are best?

What Varies Between Assemblies?

● Choice of assembler

● K length

● Various pre-processing options (changing the jigsaw pieces)
○ Subsampling (Level of coverage)
○ Error correction / Quality Trimming

● Various post-processing options
○ Scaffolding (fits chunks together - creates gaps where no pieces fit)
○ Gap Closing (tries to fill the gaps)

Which Assembly is Best?

The one that matches our expectations?

● e.g. Known genome length

The most contiguous?

● Risks rewarding aggressive assemblers

Alignments

● Reads to Assembly
● Assembly to Reference

Other approaches?

● A configurable pipeline for generating and comparing
multiple de novo genome assemblies

● Reduce the bioinformatician's workload, increase
consistency and reduce errors

● Single interface to multiple assemblers

● Make efficient use of HPC Resources

● Open Source and Portable

RAMPART Pipeline - Usage

Input:

● Short reads
● Job configuration file
● Environment configuration file
● CLI arguments

MASS

Job Config

EnvironmentC
onfig

MECQ AMP

Reads

AssemblyPrep

CLI
arguments

Output:

● Single optimised assembly
● All other assemblies built during the job
● Graphs
● Tables
● Logs

RAMPART Pipeline - Stages

● MECQ (Multiple Error Correction and Quality trimming tool)

● MASS (Multiple ASSembly tool)

● AMP (Assembly iMProver)

MASS

Job Config

Environment
Config

MECQ AMP

Reads

AssemblyPrep

CLI
arguments

RAMPART Pipeline - Stages

● MECQ (Multiple Error Correction and Quality trimming tool)

● MASS (Multiple ASSembly tool)

● AMP (Assembly iMProver)

● RAMPART (Robust, Automatic, Many-Parallel Assemblies Toolkit)

MASS

Job Config

Environment
Config

MECQ AMP

Reads

AssemblyPrep

CLI
arguments

RAMPART Architecture

Conan

External tool API

RAMPART pipeline
● Three layers in the software

architecture

● Top layer is the RAMPART
pipeline shown in the previous
slides

● Each layer is a Java / Maven Project

● Each project and all other dependencies are compiled into a
single executable jar

RAMPART Architecture - Conan

Conan

External tool API

RAMPART pipeline

● "extremely light-weight workflow
management application"

● Features:
○ Script / Tool chaining
○ LSF support
○ Multi-user
○ Web-interface
○ Task tracking
○ Task control

● TGAC extensions (ConanX)
○ "Execution Contexts" / Scheduler

selection
○ Made conan portable
○ Tool loading

RAMPART Architecture - External Tool API

Conan

External tool API

RAMPART pipeline

● All tools are wrapped as Conan Processes for
running in a Conan pipeline

● Provides consistent interface to certain
classes of tools

● For example, all Assemblers are assumed to
have the same features:

○ Where feature control in API is missing
the tool default is used

○ Where present, generic input is
translated into tool specific argument

● Handles creation of tool specific configuration
files automatically

○ e.g. SOAP library config

Current Version (0.4.1)

Tools:
● MECQ:

○ Quake
○ Musket
○ Sickle

● MASS:
○ Abyss
○ SOAP2

● AMP:
○ SSPACE
○ SOAP GapCloser

Features:
● Scheduling:

○ LSF
○ PBS (untested)

● Parameter optimisation:
○ K length
○ Read pre-processing
○ Auto select best assembly (optional)

● Assembly Contiguity comparison and analysis

● Single interface for customisable pipeline

● Environment agnostic

Future

Tools:
● Prep:

○ KmerGenie (or TGAC variant)
● MASS:

○ ALLPATHS-LG

Features:
● Web interface

○ User login
○ Job tracking
○ Pause / Resume jobs

Features:
● Scheduling:

● Enhanced comparison and
validation

○ Kmer-based analysis
○ Feature Response Curves

(FRCbam)

○ Contamination detection
○ Scaffolding analysis

● Read coverage optimisation

● Post-processing options:
○ Deduplication
○ Header formatting

Availability

● https://github.com/TGAC/RAMPART
● https://github.com/TGAC/TgacConanProcs

● https://github.com/tburdett/Conan2.git (ConanX branch)

(V1.6)

Current stable version is tagged as V0.4.1 - Pre compiled shaded jar available

https://github.com/TGAC/RAMPART
https://github.com/TGAC/RAMPART
https://github.com/TGAC/TgacConanProcs
https://github.com/TGAC/TgacConanProcs

Summary

● Not a new assembler!
○ A configurable, portable, end-to-end genome assembly pipeline
○ Automatic parameter optimisation
○ Automatic assembly comparison and validation

● Is used in TGAC for some assembly projects when we understand the data
(amount, length, types) and the genome (size, heterozygosity, repeat content)
and we predict the job will not demand too much computing resources

● Work in progress but:
○ Will be extended and maintained
○ Stable versions are tagged as releases in github

Acknowledgements

Bernardo Clavijo

Robert Davey

Nizar Drou

David Swarbreck

Tony Burdett

Any Questions?

