Biopython and the Lab Scientist

Brad Chapman, University of Georgia

1 August 2002



The Basics of Biopython

International association
of developers of freely
available python tools for
bioinformatics

Established in 1999

Part of Open Bioinformatics Foundation

Active mail lists, CVS servers, and so on

http://www.biopython.org



Messy page full of what Biopython can do

Parse Blast results (standalone and web); run biology related
programs (blastall, clustalw, EMBOSS); deal with FASTA for-
matted files; parse GenBank files; parse PubMed, Medline and
work with on-line resource; parse Expasy, SCOP, Rebase, Uni-
Gene, SwissProt; deal with Sequences; data classification (k
Nearest Neighbors, Bayes, SVMs); Aligning sequences; CORBA
interaction with Bioperl and BioJava; SQL database storage
through BioSQL; Neural Networks; Genetic Algorithms; Hid-
den Markov Models; creating pretty PDF files for posters; for-
mat flatfiles with random access to entries; structural biology
— PDB, FSSP; create specialized substitution matrices; okay,
my head hurts. ..



The Basics of Python

Interpreted, interactive, object-oriented programming lan-
guage

Designed to have a clear syntax and be easy to learn

Scripting language: good for quick projects and scales to
larger undertakings

Has all of the bells and whistles — database access, XML
parsing, graphical user interfawes .

http://www.python.org



def

for

Example of some python code

bottle(n):
try:
return { 0: "no more bottles",
1: "1 bottle"} [n] + " of beer"
except KeyError:

return "%d bottles of beer" % n

i in range(99, 0, -1):
new_bottle = bottle(i)
bottles_left = bottle(i-1)
print "%s on the wall, %s," \
7% (new_bottle, new_bottle)
print "take one down, pass it around,"
print "%s on the wall." 7, bottles_left



Our goal — Solving Problems

e Talk will focus on using Biopython to solve biological prob-
lems

e Who am I?
— Biologist

— Work in a large size academic lab on programming and
wet-lab problems

— Not much formal training in programming

e T he random theme of the talk, and why you should feel
very sorry for me.



Goals of this talk

Show examples of how Biopython can be used in an every-
day lab environment.

Illustrate the use of Biopython to give an idea of how it
looks to write python code with Biopython

Emphasize some major concepts in Biopython code.

Demonstrate that learning Biopython is worth your time



First problem — FASTA files and fixing a flat

e Common problem is dealing with FASTA formatted files
— Reading FASTA files — getting sequences

— Writing FASTA files — input into other programs



Reading and Rewriting a FASTA file

e A common task when getting files ready for input into a
program.

e Good example might be extracting a subsequence in a num-
ber of proteins to align with Clustalw.

e Start with reading the file

from Bio import Fasta
iterator = Fasta.Iterator(open(filename), Fasta.RecordParser())
while 1:

rec = iterator.next()

if not(rec): break

print rec.title

print rec.sequence

print rec



Reading a FASTA file in detail

e Set up an iterator which gives you one FASTA record at a
time.

from Bio import Fasta
iterator = Fasta.Iterator(open(filename), Fasta.RecordParser())

e Use the iterator — each record returned is a python class.
This is a standard Biopython theme.

while 1:
rec = iterator.next()
if not(rec): break
print rec.title
print rec.sequence
print rec



Writing out a FASTA file

e Create a Biopython FASTA Record class.

rec = Fasta.Record()
rec.title = "My Sequence"
rec.sequence = "GATCGATC"

e T he string representation of the class is FASTA.

>My Sequence
GATCGATC

out = open(filename, "w")
out.write(str(rec))

out.close()



Second Problem — BLASTs and Broken Fuel
Pumps

e BLAST fuels much biology research; fast way to compare
your sequence to every known sequence.

e Automating BLAST searches allows expanding your research
beyond what you can do by hand. Or, it just keeps you from

going crazy.



Running many local BLASTSs

e BLASTIiNng a sequenced EST against the nr database.

def blast_a_record(fasta_rec):
from Bio.Blast import NCBIStandalone
open("to_blast.fasta", "w").write(str(fasta_rec))
out, error = NCBIStandalone.blastall(\
"blastall", "blastn",
"nr", "to_blast.fasta")
parser = NCBIStandalone.BlastParser()
rec = parser.parse(out)

return rec.descriptions[0].title



Running many local BLASTs continued

e Use this function to BLAST all ESTs in a file and write
out the name of the EST and the description of the first
BLAST hit

iterator = Fasta.Iterator(open(est_file), Fasta.RecordParser())
while 1:

rec = iterator.next()

if not(rec): break

first_blast_hit = blast_a_record(rec)

print rec.title
print first_blast_hit



Whew. So what have we learned?

Many tasks make use of similar functionality (reading FASTA
files), so learning one module can be readily applicable to
your next program.

Biopython code is modular (Fasta, Blast, ...) so using it
IS @ matter of stringing together modules you are involved
in.

Learning enough to write a simple program like the BLAST
program can save tons of repetitive work.

Many Biopython concepts (parsers, iterators, records) are
applicable from module to module.



Final Problem — Designing primers and
crankshaft rebuilding

"To rebuild a crankshaft, you need special tools.”

e Many things that come up in lab require writing specialized
programs because needs are so specific.

e One task which requires tieing together parts of several
programs is batch design of primers.



Description of our primer design goals

e Start with a FASTA file of sequences we want to design
primers for.

e \We want to design primers to span a central region in each
of the FASTA records.

e \Write out primer pairs to a file which can be readily loaded
into Excel.

This code is simplified from some real work I did for one of my
friends who was looking at designing hundreds of primers by
hand. It took a little over an hour to program.



Running primer3 to design primers for a
FASTA record

def get_primers(fasta_record, start, end):
from Bio.Emboss.Applications import Primer3Commandline
from Bio.Emboss.Primer import Primer3Parser
from Bio.Application import generic_run

open("in.pr3", "w").write(str(fasta_record) + "\n")

primer_cl = Primer3Commandline ()
primer_cl.set_parameter("-sequence", "in.pr3")
primer_cl.set_parameter("-outfile", "out.pr3")
primer_cl.set_parameter("-productsizerange", "350,10000")
primer_cl.set_parameter("-target", "Vs,%s" % (start, end))
result, r, e = generic_run(primer_cl)

parser = Primer3Parser()
return parser.parse(open("out.pr3"))



T he main program to design the primers

def main(fasta_file, output_file):
output_handle = open(output_file, "w"
output_handle.write("name,forward_primer,reverse_primer\n")

parser = Fasta.RecordParser()
iterator = Fasta.Iterator(open(fasta_file), parser)
while 1:
cur_record = iterator.next()
if not(cur_record): break
primer_record = get_primers(cur_record, 100, 250)
if len(primer_record.primers) > O:
primer = primer_record.primers|[0]
output_handle.write("%s,%s,%s\n" 7% (
cur_record.title, primer.forward_seq,
primer.reverse_seq))
else:

print "No primers found for %s" ¥ cur_record.title



Finally — restoring your own car

e T his talk showed a few of the tasks which can be more
easily accomplished using the Biopython libraries.

e Biopython is also appropriate for much larger tasks and can
fit well into large analysis pipelines.

e Hopefully this illustrates some of the possibilities for an-
swering your own questions using Python and Biopython.




Acknowledgements

Thanks for Biopython go out to all of the great
volunteers that have contributed to it: Jeff Chang,
Andrew Dalke, Iddo Friedberg, Thomas
Sicheritz-Ponten, Kate Linder, Johann Visagie, Yair

Benita, Gavin E Crooks and many others




