
Biopython and the Lab Scientist

Brad Chapman, University of Georgia

1 August 2002



The Basics of Biopython

• International association

of developers of freely

available python tools for

bioinformatics

• Established in 1999

• Part of Open Bioinformatics Foundation

• Active mail lists, CVS servers, and so on

• http://www.biopython.org



Messy page full of what Biopython can do

Parse Blast results (standalone and web); run biology related

programs (blastall, clustalw, EMBOSS); deal with FASTA for-

matted files; parse GenBank files; parse PubMed, Medline and

work with on-line resource; parse Expasy, SCOP, Rebase, Uni-

Gene, SwissProt; deal with Sequences; data classification (k

Nearest Neighbors, Bayes, SVMs); Aligning sequences; CORBA

interaction with Bioperl and BioJava; SQL database storage

through BioSQL; Neural Networks; Genetic Algorithms; Hid-

den Markov Models; creating pretty PDF files for posters; for-

mat flatfiles with random access to entries; structural biology

– PDB, FSSP; create specialized substitution matrices; okay,

my head hurts. . .



The Basics of Python

• Interpreted, interactive, object-oriented programming lan-
guage

• Designed to have a clear syntax and be easy to learn

• Scripting language: good for quick projects and scales to
larger undertakings

• Has all of the bells and whistles – database access, XML
parsing, graphical user interfaces . . .

• http://www.python.org



Example of some python code

def bottle(n):

try:

return { 0: "no more bottles",

1: "1 bottle"} [n] + " of beer"

except KeyError:

return "%d bottles of beer" % n

for i in range(99, 0, -1):

new_bottle = bottle(i)

bottles_left = bottle(i-1)

print "%s on the wall, %s," \

% (new_bottle, new_bottle)

print "take one down, pass it around,"

print "%s on the wall." % bottles_left



Our goal – Solving Problems

• Talk will focus on using Biopython to solve biological prob-

lems

• Who am I?

– Biologist

– Work in a large size academic lab on programming and

wet-lab problems

– Not much formal training in programming

• The random theme of the talk, and why you should feel

very sorry for me.



Goals of this talk

• Show examples of how Biopython can be used in an every-

day lab environment.

• Illustrate the use of Biopython to give an idea of how it

looks to write python code with Biopython

• Emphasize some major concepts in Biopython code.

• Demonstrate that learning Biopython is worth your time



First problem – FASTA files and fixing a flat

• Common problem is dealing with FASTA formatted files

– Reading FASTA files – getting sequences

– Writing FASTA files – input into other programs



Reading and Rewriting a FASTA file

• A common task when getting files ready for input into a
program.

• Good example might be extracting a subsequence in a num-
ber of proteins to align with Clustalw.

• Start with reading the file

from Bio import Fasta

iterator = Fasta.Iterator(open(filename), Fasta.RecordParser())

while 1:

rec = iterator.next()

if not(rec): break

print rec.title

print rec.sequence

print rec



Reading a FASTA file in detail

• Set up an iterator which gives you one FASTA record at a
time.

from Bio import Fasta

iterator = Fasta.Iterator(open(filename), Fasta.RecordParser())

• Use the iterator – each record returned is a python class.
This is a standard Biopython theme.

while 1:

rec = iterator.next()

if not(rec): break

print rec.title

print rec.sequence

print rec



Writing out a FASTA file

• Create a Biopython FASTA Record class.

rec = Fasta.Record()

rec.title = "My Sequence"

rec.sequence = "GATCGATC"

• The string representation of the class is FASTA.

>My Sequence

GATCGATC

out = open(filename, "w")

out.write(str(rec))

out.close()



Second Problem – BLASTs and Broken Fuel

Pumps

• BLAST fuels much biology research; fast way to compare
your sequence to every known sequence.

• Automating BLAST searches allows expanding your research
beyond what you can do by hand. Or, it just keeps you from
going crazy.



Running many local BLASTs

• BLASTing a sequenced EST against the nr database.

def blast_a_record(fasta_rec):

from Bio.Blast import NCBIStandalone

open("to_blast.fasta", "w").write(str(fasta_rec))

out, error = NCBIStandalone.blastall(\

"blastall", "blastn",

"nr", "to_blast.fasta")

parser = NCBIStandalone.BlastParser()

rec = parser.parse(out)

return rec.descriptions[0].title



Running many local BLASTs continued

• Use this function to BLAST all ESTs in a file and write

out the name of the EST and the description of the first

BLAST hit

iterator = Fasta.Iterator(open(est_file), Fasta.RecordParser())

while 1:

rec = iterator.next()

if not(rec): break

first_blast_hit = blast_a_record(rec)

print "-------"

print rec.title

print first_blast_hit



Whew. So what have we learned?

• Many tasks make use of similar functionality (reading FASTA

files), so learning one module can be readily applicable to

your next program.

• Biopython code is modular (Fasta, Blast, . . . ) so using it

is a matter of stringing together modules you are involved

in.

• Learning enough to write a simple program like the BLAST

program can save tons of repetitive work.

• Many Biopython concepts (parsers, iterators, records) are

applicable from module to module.



Final Problem – Designing primers and

crankshaft rebuilding

• ”To rebuild a crankshaft, you need special tools.”

• Many things that come up in lab require writing specialized
programs because needs are so specific.

• One task which requires tieing together parts of several
programs is batch design of primers.



Description of our primer design goals

• Start with a FASTA file of sequences we want to design

primers for.

• We want to design primers to span a central region in each

of the FASTA records.

• Write out primer pairs to a file which can be readily loaded

into Excel.

This code is simplified from some real work I did for one of my

friends who was looking at designing hundreds of primers by

hand. It took a little over an hour to program.



Running primer3 to design primers for a

FASTA record

def get_primers(fasta_record, start, end):

from Bio.Emboss.Applications import Primer3Commandline

from Bio.Emboss.Primer import Primer3Parser

from Bio.Application import generic_run

open("in.pr3", "w").write(str(fasta_record) + "\n")

primer_cl = Primer3Commandline()

primer_cl.set_parameter("-sequence", "in.pr3")

primer_cl.set_parameter("-outfile", "out.pr3")

primer_cl.set_parameter("-productsizerange", "350,10000")

primer_cl.set_parameter("-target", "%s,%s" % (start, end))

result, r, e = generic_run(primer_cl)

parser = Primer3Parser()

return parser.parse(open("out.pr3"))



The main program to design the primers

def main(fasta_file, output_file):

output_handle = open(output_file, "w")

output_handle.write("name,forward_primer,reverse_primer\n")

parser = Fasta.RecordParser()

iterator = Fasta.Iterator(open(fasta_file), parser)

while 1:

cur_record = iterator.next()

if not(cur_record): break

primer_record = get_primers(cur_record, 100, 250)

if len(primer_record.primers) > 0:

primer = primer_record.primers[0]

output_handle.write("%s,%s,%s\n" % (

cur_record.title, primer.forward_seq,

primer.reverse_seq))

else:

print "No primers found for %s" % cur_record.title



Finally – restoring your own car

• This talk showed a few of the tasks which can be more
easily accomplished using the Biopython libraries.

• Biopython is also appropriate for much larger tasks and can
fit well into large analysis pipelines.

• Hopefully this illustrates some of the possibilities for an-
swering your own questions using Python and Biopython.



Acknowledgements

Thanks for Biopython go out to all of the great

volunteers that have contributed to it: Jeff Chang,

Andrew Dalke, Iddo Friedberg, Thomas

Sicheritz-Ponten, Kate Linder, Johann Visagie, Yair

Benita, Gavin E Crooks and many others


