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BioLib provides the infrastructure for mapping existing and novel C/C++ libraries against the major
high level languages using a combination of SWIG and cmake. This allows writing code once and
sharing it with all bioinformaticians - who, as it happens, are a diverse lot with diverse computing
platforms and programming language preferences.

Bioinformatics is facing some major challenges handling IOdata from microarrays, sequencers etc.,
where every innovation comes with new data formats and data size increases rapidly. Writing so-
lutions in every language domain usually entails duplication of effort. At the same time developers
are a scarce resource in every Bio* project. In practice thisoften means missing or incomplete func-
tionality. For example microarray support is only satisfactory in R/Bioconductor, but lacking in all
other domains. By mapping libraries using SWIG we can support all languages in one strike, thereby
concentrating the effort of supporting IO in one place.

BioLib also provides an alternative to webservices. Webservices are often used to cross language
barriers using a ’slow’ network interface. BioLib providesan alternative when fast low overhead
communication is desired, like for high throughput, high performance computing.

BioLib has mapped libraries for Affymetrix microarray IO (the Affyio implementation by Ben Bol-
stad) and the Staden IO lib (James Bonfield) for 454-sequencer trace files, amongst others, and made
these available for the major languages on the major computing platforms (thanks to CMake). Current
efforts include mapping of R/QTL analysis libraries and libsequence and/or BioC++ libraries. Also a
solution is worked on for documenting API of mapped libraries automatically for all supported lan-
guages - something not provided by SWIG. Finally BioLib is attracting new code development with a
focus on high performance computing including parallelization and GPU optimizations.

In this talk I will discuss the ins and outs of library mappingwith SWIG, what it means, and how
BioLib takes the pain away of deployment on different platforms, even with external dependencies.


